Intracellular chloride concentration influences the GABAA receptor subunit composition

نویسندگان

  • Francesca Succol
  • Hubert Fiumelli
  • Fabio Benfenati
  • Laura Cancedda
  • Andrea Barberis
چکیده

GABA(A) receptors (GABA(A)Rs) exist as different subtype variants showing unique functional properties and defined spatio-temporal expression pattern. The molecular mechanisms underlying the developmental expression of different GABA(A)R are largely unknown. The intracellular concentration of chloride ([Cl(-)](i)), the main ion permeating through GABA(A)Rs, also undergoes considerable changes during maturation, being higher at early neuronal stages with respect to adult neurons. Here we investigate the possibility that [Cl(-)](i) could modulate the sequential expression of specific GABA(A)Rs subtypes in primary cerebellar neurons. We show that [Cl(-)](i) regulates the expression of α3-1 and δ-containing GABA(A) receptors, responsible for phasic and tonic inhibition, respectively. Our findings highlight the role of [Cl(-)](i) in tuning the strength of GABAergic responses by acting as an intracellular messenger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective targeting of the α5-subunit of GABAA receptors relaxes airway smooth muscle and inhibits cellular calcium handling.

The clinical need for novel bronchodilators for the treatment of bronchoconstrictive diseases remains a major medical issue. Modulation of airway smooth muscle (ASM) chloride via GABAA receptor activation to achieve relaxation of precontracted ASM represents a potentially beneficial therapeutic option. Since human ASM GABAA receptors express only the α4- and α5-subunits, there is an opportunity...

متن کامل

Prenatal stress increased γ2 GABAA receptor subunit gene expression in hippocampus and potentiated pentylenetetrazol-induced seizure in rats

Objective(s): Stress during pregnancy is able to bring extensive effects on neurobehavioral development in offspring. The GABAergic system plays a pivotal role in neuronal excitability, which can be affected by prenatal stress (PS). This study aimed to evaluate impact of the PS on γ2 subunit of gamma-aminobutyric acid A (GABAA) receptor gene expression in the hippocamp...

متن کامل

Structural Analysis and Binding Modes of Benzodiazepines with Modeled GABAA Receptor Subunit Gamma-2

Activation of chloride gated GABAA receptors regulates the excitatory transmission in the epileptic brain. Positive allosteric modulation of these receptors via distinct recognition sites is the therapeutic mechanism of antiepileptic agents which prevents the hyperexcitability associated with epilepsy. These distinct sites are based on subunit composition which determines binding of various dru...

متن کامل

Quantitative Analysis of GABAA Gamma Receptor Subunits in the Developing Embryonic Chick Forebrain

Objective(s) In this study we investigated the expression of GABAA receptor subunits during brain development. These receptors may change in the embryonic chick forebrain. Materials and Methodes The expression levels of four types of GABAA receptor gamma subunits (γ1, γ2, γ3 and γ4) were quantified in the embryonic chick forebrain at 32 hr, 3, 7, 14, and 20 days of incubation and day one aft...

متن کامل

Cyclic AMP-dependent protein kinase decreases GABAA receptor current in mouse spinal neurons.

GABA, the major inhibitory neurotransmitter in the mammalian brain, binds to GABAA receptors, which form chloride ion channels. The predicted structure of the GABAA receptor places a consensus phosphorylation site for cAMP-dependent protein kinase (PKA) on an intracellular domain of the channel. Phosphorylation by various protein kinases has been shown to alter the activity of certain ligand- a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012